1,683 research outputs found

    Interpreting the eH Stretching Region, Through Infrared Partial Deuteration Studies

    Get PDF
    Information derived from a study of \u27isolated\u27 CH stretching frequencies, measured in partially deuterated organic and organemetallic compounds, is reviewed. This includes CH bond lengths and dissociation energies, and HCH angles in methyl groups, Excellent agreement is found between CH bond length differences predicted from VCH\u27s values and those calculated by ab initio methods. V\u27sCH data also agree with the results of high overtone, local mode studies in distinguishing differences in CH bond strengths. The former however are based on spectra which are easier to assign to specific bonds. They also enable one to understand the spectra of normal, undeuterated molecules in the CH stretching region, through \u27energy factored force field\u27 calculations. Reference is made to situations involvlng free internal rotation of methyl groups, and to studies of other \u27isolated\u27 MH bonds (M = N, Si, Ge, Sn)

    Mass along the Line of Sight to the Gravitational Lens B1608+656: Galaxy Groups and Implications for H_0

    Get PDF
    We report the discovery of four groups of galaxies along the line of sight to the B1608+656 gravitational lens system. One group is at the redshift of the primary lensing galaxy (z = 0.631) and appears to have a low mass, with eight spectroscopically confirmed members and an estimated velocity dispersion of 150 ± 60 km s^(-1). The three other groups are in the foreground of the lens. These groups contain ~10 confirmed members each and are located at redshifts of 0.265, 0.426, and 0.52. Two of the three additional groups are centered roughly on the lens system, while the third is centered ~1' south of the lens. We investigate the effect of each of the four groups on the gravitational lensing potential of the B1608+656 system, with a particular focus on the implications for the value of H_0 derived from this system. We find that each group provides an external convergence of ~0.005-0.060, depending on the assumptions made in the calculation. For the B1608+656 system, the stellar velocity dispersion of the lensing galaxy has been measured, thus breaking the mass sheet degeneracy due to the group that is physically associated with the lens. The effect of the other groups along the line of sight can be folded into the overall uncertainties due to large-scale structure (LSS) along the line of sight. Because B1608+656 appears to lie along an overdense line of sight, the LSS will cause the measurement of H_0 to be biased high for this system. This effect could be 5% or greater

    The Cosmic Lens All-Sky Survey parent population - I. Sample selection and number counts

    Get PDF
    We present the selection of the Jodrell Bank Flat-spectrum (JBF) radio source sample, which is designed to reduce the uncertainties in the Cosmic Lens All-Sky Survey (CLASS) gravitational lensing statistics arising from the lack of knowledge about the parent population luminosity function. From observations at 4.86 GHz with the Very Large Array, we have selected a sample of 117 flat-spectrum radio sources with flux densities greater than 5 mJy. These sources were selected in a similar manner to the CLASS complete sample and are therefore representative of the parent population at low flux densities. The vast majority (~90 per cent) of the JBF sample are found to be compact on the arcsecond scales probed here and show little evidence of any extended radio jet emission. Using the JBF and CLASS complete samples we find the differential number counts slope of the parent population above and below the CLASS 30 mJy flux density limit to be -2.07+/-0.02 and -1.96+/-0.12, respectively.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    2-D constrained Navier-Stokes equation and intermediate asymptotics

    Full text link
    We introduce a modified version of the two-dimensional Navier-Stokes equation, preserving energy and momentum of inertia, which is motivated by the occurrence of different dissipation time scales and related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics. The analysis we present here is purely formal. A rigorous study of this equation will be done in a forthcoming paper

    Keck spectroscopy of CLASS gravitational lenses

    Get PDF
    We present the optical spectra of four newly discovered gravitational lenses from the Cosmic Lens All-Sky Survey (CLASS). These observations were carried out using the Low Resolution Imaging Spectrograph on the W. M. Keck-I Telescope as part of a program to study galaxy-scale gravitational lenses. From our spectra we found the redshift of the background source in CLASS B0128+437 (z_s=3.1240+-0.0042) and the lensing galaxy redshifts in CLASS B0445+123 (z_l=0.5583+-0.0003) and CLASS B0850+054 (z_l=0.5883+-0.0006). Intriguingly, we also discovered that CLASS B0631+519 may have two lensing galaxies (z_l,1=0.0896+-0.0001, z_l,2=0.6196+-0.0004). We also found a single unidentified emission line from the lensing galaxy in CLASS B0128+437 and the lensed source in CLASS B0850+054. We find the lensing galaxies in CLASS B0445+123 and CLASS B0631+519 (l,2) to be early-type galaxies with Einstein Radii of 2.8-3.0 h^{-1} kpc. The deflector in CLASS B0850+054 is a late-type galaxy with an Einstein Radius of 1.6 h^{-1} kpc.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    Proper motion in lensed radio jets at redshift 3:A possible dual super-massive black hole system in the early Universe

    Get PDF
    In this paper, we exploit the gravitational lensing effect to detect proper motion in the highly magnified gravitationally lensed source MG B2016+112. We find positional shifts up to 6 mas in the lensed images by comparing two Very Long Baseline Interferometric (VLBI) radio observations at 1.7 GHz that are separated by 14.359 years, and provide an astrometric accuracy of the order of tens of μ\muas. From lens modelling, we exclude a shift in the lensing galaxy as the cause of the positional change of the lensed images, and we assign it to the background source. The source consists of four sub-components separated by 175\sim 175 pc, with proper motion of the order of tens μ\muas yr1^{-1} for the two components at highest magnification (μ350\mu\sim350) and of the order of a few mas yr1^{-1} for the two components at lower magnification (μ2\mu\sim2). We propose single AGN and dual AGN scenarios to explain the source plane. Although, the latter interpretation is supported by the archival multi-wavelength properties of the object. In this case, MG B2016+112 would represent the highest redshift dual radio-loud AGN system discovered thus far, and would support the merger interpretation for such systems. Also, given the low probability (105\sim10^{-5}) of detecting a dual AGN system that is also gravitationally lensed, if confirmed, this would suggest that such dual AGN systems must be more abundant in the early Universe than currently thought.Comment: 11 pages, 4 figures; accepted for publication by Astronomy and Astrophysic

    The effect of high temperature upon the transmittance and the emission spectrum of infrared window materials

    Get PDF
    The effect of high temperatures such as those expected to be encountered in the Pioneer Venus Probe mission upon the transmittance of zinc selenide and cadmium telluride infrared window materials was investigated and the radiation emitted by these materials at high temperatures was determined

    Hard Discs on the Hyperbolic Plane

    Get PDF
    We examine a simple hard disc fluid with no long range interactions on the two dimensional space of constant negative Gaussian curvature, the hyperbolic plane. This geometry provides a natural mechanism by which global crystalline order is frustrated, allowing us to construct a tractable model of disordered monodisperse hard discs. We extend free area theory and the virial expansion to this regime, deriving the equation of state for the system, and compare its predictions with simulation near an isostatic packing in the curved space.Comment: 4 pages, 3 figures, included, final versio

    A study of blow-ups in the Keller-Segel model of chemotaxis

    Full text link
    We study the Keller-Segel model of chemotaxis and develop a composite particle-grid numerical method with adaptive time stepping which allows us to accurately resolve singular solutions. The numerical findings (in two dimensions) are then compared with analytical predictions regarding formation and interaction of singularities obtained via analysis of the stochastic differential equations associated with the Keller-Segel model
    corecore